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Abstract. This paper presents a computation of the Vγ dimension for
regression in bounded subspaces of Reproducing Kernel Hilbert Spaces
(RKHS) for the Support Vector Machine (SVM) regression ǫ-insensitive
loss function Lǫ, and general Lp loss functions. Finiteness of the Vγ

dimension is shown, which also proves uniform convergence in probability
for regression machines in RKHS subspaces that use the Lǫ or general
Lp loss functions. This paper presents a novel proof of this result. It also
presents a computation of an upper bound of the Vγ dimension under
some conditions, that leads to an approach for the estimation of the
empirical Vγ dimension given a set of training data.

1 Introduction

The Vγ dimension, a variation of the VC-dimension [11], is important for the
study of learning machines [1, 5]. In this paper we present a computation of the
Vγ dimension of real-valued functions L(y, f(x)) = |y − f(x)|p and (Vapnik’s
ǫ-insensitive loss function Lǫ [11]) L(y, f(x)) = |y − f(x)|ǫ with f in a bounded
sphere in a Reproducing Kernel Hilbert Space (RKHS). We show that the Vγ

dimension is finite for these loss functions, and compute an upper bound on it. We
also present a second computation of the Vγ dimension in a special case of infinite
dimensional RKHS, which is often the type of hypothesis spaces considered in
the literature (i.e. Radial Basis Functions [9, 6]). It also holds for the case when a
bias is added to the functions, that is with f being of the form f = f0 + b, where
b ∈ R and f0 is in a sphere in an infinite dimensional RKHS. This computation
leads to an approach for computing the empirical Vγ dimension (or random
entropy of a hypothesis space [11]) given a set of training data, an issue that
we discuss at the end of the paper. Our result applies to standard regression
learning machines such as Regularization Networks (RN) and Support Vector
Machines (SVM).

For a regression learning problem using L as a loss function it is known
[1] that finiteness of the Vγ dimension for all γ > 0 is a necessary and sufficient
condition for uniform convergence in probability [11]. So the results of this paper
have implications for uniform convergence both for RN and for SVM regression
[5].



Previous related work addressed the problem of pattern recognition where L

is an indicator function [3, 7]. The fat-shattering dimension [1] was considered
instead of the Vγ one. A different approach to proving uniform convergence for
RN and SVM is given in [13] where covering number arguments using entropy
numbers of operators are presented. In both cases, regression as well as the case
of non-zero bias b were marginally considered.

The paper is organized as follows. Section 2 outlines the background and
motivation of this work. The reader familiar with statistical learning theory and
RKHS can skip this section. Section 3 presents a proof of the results as well as
an upper bound to the Vγ dimension. Section 4 presents a second computation
of the Vγ dimension in a special case of infinite dimensional RKHS, also when
the hypothesis space consists of functions of the form f = f0 + b where b ∈ R

and f0 in a sphere in a RKHS. Finally, section 5 discusses possible extensions of
this work.

2 Background and Motivation

We consider the problem of learning from examples as it is viewed in the frame-
work of statistical learning theory [11]. We are given a set of l examples
{(x1, y1), .., (xl, yl)} generated by randomly sampling from a space X × Y with
X ⊂ Rd, Y ⊂ R according to an unknown probability distribution P (x, y).
Throughout the paper we assume that X and Y are bounded. Using this set of
examples the problem of learning consists of finding a function f : X → Y that
can be used given any new point x ∈ X to predict the corresponding value y.

The problem of learning from examples is known to be ill-posed [11, 10]. A
classical way to solve it is to perform Empirical Risk Minimization (ERM) with
respect to a certain loss function, while restricting the solution to the problem
to be in a “small” hypothesis space [11]. Formally this means minimizing the

empirical risk Iemp[f ] = 1
l

∑l
i=1 L(yi, f(xi)) with f ∈ H, where L is the loss

function measuring the error when we predict f(x) while the actual value is y,
and H is a given hypothesis space.

In this paper, we consider hypothesis spaces of functions which are hyper-
planes in some feature space:

f(x) =
∞
∑

n=1

wnφn(x) (1)

with:
∞
∑

n=1

w2
n

λn

< ∞ (2)

where φn(x) is a set of given, linearly independent basis functions, λn are given
non-negative constants such that

∑∞
n=1 λ2

n < ∞. Spaces of functions of the form
(1) can also be seen as Reproducing Kernel Hilbert Spaces (RKHS) [2, 12] with



kernel K given by:

K(x,y) ≡
∞
∑

n=1

λnφn(x)φn(y). (3)

For any function f as in (1), quantity (2) is called the RKHS norm of f , ‖f‖2
K ,

while the number D of features φn (which can be finite, in which case all sums
above are finite) is the dimensionality of the RKHS.

If we restrict the hypothesis space to consist of functions in a RKHS with
norm less than a constant A, the general setting of learning discussed above
becomes:

Minimize : 1
l

∑l
i=1 L(yi, f(xi))

subject to : ‖f‖2
K ≤ A2. (4)

An important question for any learning machine of the type (4) is whether it
is consistent: as the number of examples (xi, yi) goes to infinity the expected er-
ror of the solution of the machine should converge in probability to the minimum
expected error in the hypothesis space [11, 4]. In the case of learning machines
performing ERM in a hypothesis space (4), consistency is shown to be related
with uniform convergence in probability [11], and necessary and sufficient con-
ditions for uniform convergence are given in terms of the Vγ dimension (also
known as level fat shattering dimension) of the hypothesis space considered [1,
8], which is a measure of complexity of the space.

In statistical learning theory typically the measure of complexity used is
the VC-dimension. However, as we show below, the VC-dimension in the above
learning setting in the case of infinite dimensional RKHS is infinite both for Lp

and Lǫ, so it cannot be used to study learning machines of the form (4). Instead
one needs to consider other measures of complexity, such as the Vγ dimension,
in order to prove uniform convergence in infinite dimensional RKHS. We now
present some background on the Vγ dimension [1].

The Vγ dimension of a set of real-valued functions is defined as follows:

Definition 1. Let C ≤ L(y, f(x)) ≤ B, f ∈ H, with C and B < ∞. The Vγ-
dimension of L in H (of the set {L(y, f(x)), f ∈ H}) is defined as the maximum
number h of vectors (x1, y1) . . . , (xh, yh) that can be separated into two classes
in all 2h possible ways using rules:

class 1 if: L(yi, f(xi)) ≥ s + γ

class -1 if: L(yi, f(xi)) ≤ s − γ

for f ∈ H and some C + γ ≤ s ≤ B − γ. If, for any number N , it is possible to
find N points (x1, y1) . . . , (xN , yN) that can be separated in all the 2N possible
ways, we will say that the Vγ-dimension of L in H is infinite.

For γ = 0 and for s being free to change values for each separation of the
data, this becomes the VC dimension of the set of functions [11]. In the case
of hyperplanes (1), the Vγ dimension has also been referred to in the literature



[11] as the V C dimension of hyperplanes with margin. In order to avoid confu-
sion with names, we call the V C dimension of hyperplanes with margin as the
Vγ dimension of hyperplanes (for appropriate γ depending on the margin, as
discussed below).

The Vγ dimension can be used to bound the covering numbers of a set of
functions [1], which are in turn related to the generalization performance of
learning machines. Typically the fat-shattering dimension [1] is used for this
purpose, but a close relation between that and the Vγ dimension [1] makes the
two equivalent for the purpose of bounding covering numbers and hence studying
the statistical properties of a machine. The V C dimension has been used to
bound the growth function GH(l). This function measures the maximum number
of ways we can separate l points using functions from hypothesis space H. If h is
the V C dimension, then GH(l) is 2l if l ≤ h, and ≤ ( el

h
)h otherwise [11] (where e

is the standard natural logarithm constant). In section 3 we will use the growth
function of hyperplanes with margin to bound their VC dimension, which, as
discussed above, is their Vγ dimension that we are interested in.

Using the Vγ dimension Alon et al. [1] gave necessary and sufficient conditions
for uniform convergence in probability to take place in a hypothesis space H. In
particular they proved the following important theorem:

Theorem 1. (Alon et al. , 1997 ) Let C ≤ L(y, f(x))) ≤ B, f ∈ H, H be a set
of bounded functions. The ERM method uniformly converges (in probability) if
and only if the Vγ dimension of L in H is finite for every γ > 0.

It is clear that if for learning machines of the form (4) the Vγ dimension of
the loss function L in the hypothesis space defined is finite for ∀γ > 0, then
uniform convergence takes place. In the next section we present a proof of the
finiteness of the Vγ dimension, as well as an upper bound on it.

2.1 Why not Use the VC-dimension

Consider first the case of Lp loss functions. Consider an infinite dimensional
RKHS, and the set of functions with norm ‖f‖2

K ≤ A2. If for any N we can find
N points that we can shatter using functions of our set according to the rule:

class 1 if : |y − f(x)|p ≥ s

class − 1 if : |y − f(x)|p ≤ s

then clearly the V C dimension is infinite. Consider N distinct points (xi, yi) with
yi = 0 for all i, and let the smallest eigenvalue of matrix G with Gij = K(xi,xj)
be λ. Since we are in infinite dimensional RKHS, matrix G is always invertible
[12], so λ > 0 since G is positive definite and finite dimensional (λ may decrease
as N increases, but for any finite N it is well defined and 6= 0).

For any separation of the points, we consider a function f of the form f(x) =
∑N

i=1 αiK(xi,x), which is a function of the form (1). We need to show that we
can find coefficients αi such that the RKHS norm of the function is ≤ A2. Notice



that the norm of a function of this form is αT Gα where (α)i = αi (throughout
the paper bold letters are used for noting vectors). Consider the set of linear
equations

xj ∈ class 1 :
∑N

i=1 αiGij = s
1
p + η η > 0

xj ∈ class − 1 :
∑N

i=1 αiGij = s
1
p − η η > 0

Let s = 0. If we can find a solution α to this system of equations such that
αT Gα ≤ A2 we can perform this separation, and since this is any separation we
can shatter the N points. Notice that the solution to the system of equations is
G−1η where η is the vector whose components are (η)i = η when xi is in class 1,
and −η otherwise. So we need (G−1η)T G(G−1η) ≤ A2 ⇒ ηT G−1η ≤ A2. Since

the smallest eigenvalue of G is λ > 0, we have that ηT G−1η ≤ ηT η
λ

. Moreover

ηT η = Nη2. So if we choose η small enough such that Nη2

λ
≤ A2 ⇒ η2 ≤ A2λ

N
,

the norm of the solution is less than A2, which completes the proof.
For the case of the Lǫ loss function the argument above can be repeated with

yi = ǫ to prove again that the VC dimension is infinite in an infinite dimensional
RKHS.

Finally, notice that the same proof can be repeated for finite dimensional
RKHS to show that the V C dimension is never less than the dimensionality D of
the RKHS, since it is possible to find D points for which matrix G is invertible
and repeat the proof above. As a consequence the VC dimension cannot be
controlled by A2. This is also discussed in [13].

3 An Upper Bound on the V
 Dimension

Below we always assume that data X are within a sphere of radius R in the
feature space defined by the kernel K of the RKHS. Without loss of generality,
we also assume that y is bounded between −1 and 1. Under these assumptions
the following theorem holds:

Theorem 2. The Vγ dimension h for regression using Lp (1 ≤ p < ∞) or Lǫ

loss functions for hypothesis spaces HA = {f(x) =
∑∞

n=1 wnφn(x) |
∑∞

n=1
w2

n

λn
≤

A2} and y bounded, is finite for ∀γ > 0. If D is the dimensionality of the RKHS,

then h ≤ O(min(D,
(R2+1)(A2+1)

γ2 )).

Proof. Let’s consider first the case of the L1 loss function. Let B be the upper
bound on the loss function. From definition 1 we can decompose the rules for
separating points as follows:

class 1 if yi − f(xi) ≥ s + γ

or yi − f(xi) ≤ −(s + γ)
class − 1 if yi − f(xi) ≤ s − γ

and yi − f(xi) ≥ −(s − γ)

(5)



for some γ ≤ s ≤ B − γ. For any N points, the number of separations of the
points we can get using rules (5) is not more than the number of separations we
can get using the product of two indicator functions with margin (of hyperplanes
with margin):

function (a) : class 1 if yi − f1(xi) ≥ s1 + γ

class − 1 if yi − f1(xi) ≤ s1 − γ

function (b) : class 1 if yi − f2(xi) ≥ −(s2 − γ)
class − 1 if yi − f2(xi) ≤ −(s2 + γ)

(6)

where f1 and f2 are in HA, γ ≤ s1, s2 ≤ B − γ. This is shown as follows.
Clearly the product of the two indicator functions (6) has less “separating

power” when we add the constraints s1 = s2 = s and f1 = f2 = f . Furthermore,
even with these constraints we still have more “separating power” than we have
using rules (5): any separation realized using (5) can also be realized using the
product of the two indicator functions (6) under the constraints s1 = s2 = s and
f1 = f2 = f . For example, if y − f(x) ≥ s + γ then indicator function (a) will
give +1, indicator function (b) will give also +1, so their product will give +1
which is what we get if we follow (5). Similarly for all other cases.

As mentioned in the previous section, for any N points the number of ways
we can separate them is bounded by the growth function. Moreover, for products
of indicator functions it is known [11] that the growth function is bounded by
the product of the growth functions of the indicator functions. Furthermore, the
indicator functions in (6) are hyperplanes with margin in the D +1 dimensional
space of vectors {φn(x), y} where the radius of the data is R2 + 1, the norm of
the hyperplane is bounded by A2 + 1, (where in both cases we add 1 because of

y), and the margin is at least γ2

A2+1 . The Vγ dimension hγ of these hyperplanes

is known [11, 3] to be bounded by hγ ≤ min((D + 1) + 1,
(R2+1)(A2+1)

γ2 ). So the

growth function of the separating rules (5) is bounded by the product of the

growth functions ( el
hγ

)hγ , that is G(l) ≤
(

( el
hγ

)hγ

)2

whenever l ≥ hγ . If hreg
γ is

the Vγ dimension, then hreg
γ cannot be larger than the larger number l for which

inequality 2l ≤ ( el
hγ

)2hγ holds. From this, after some algebraic manipulations

(take the log of both sides) we get that l ≤ 5hγ , therefore hreg
γ ≤ 5 min (D +

2,
(R2+1)(A2+1)

γ2 ) which proves the theorem for the case of L1 loss functions.

For general Lp loss functions we can follow the same proof where (5) now
needs to be rewritten as:

class 1 if yi − f(xi) ≥ (s + γ)
1
p

or f(xi) − yi ≥ (s + γ)
1
p

class − 1 if yi − f(xi) ≤ (s − γ)
1
p

and f(xi) − yi ≤ (s − γ)
1
p

(7)

Moreover, for 1 < p < ∞, (s+γ)
1
p ≥ s

1
p + γ

pB
(since γ =

(

(s + γ)
1
p

)p

−
(

s
1
p

)p

=

((s + γ)
1
p − s

1
p )(((s + γ)

1
p )p−1 + . . . + (s

1
p )p−1) ≤ ((s + γ)

1
p − s

1
p )(B + . . . B) =



((s + γ)
1
p − s

1
p )(pB) ) and (s − γ)

1
p ≤ s

1
p − γ

pB
(similarly). Repeating the same

argument as above, we get that the Vγ dimension is bounded by 5 min (D +

2,
(pB)2(R2+1)(A2+1)

γ2 ). Finally, for the Lǫ loss function (5) can be rewritten as:

class 1 if yi − f(xi) ≥ s + γ + ǫ

or f(xi) − yi ≥ s + γ + ǫ

class − 1 if yi − f(xi) ≤ s − γ + ǫ

and f(xi) − yi ≤ s − γ + ǫ

(8)

where calling s′ = s + ǫ we can simply repeat the proof above and get the same
upper bound on the Vγ dimension as in the case of the L1 loss function. (Notice
that the constraint γ ≤ s ≤ B − γ is not taken into account. Taking this into
account may slightly change the Vγ dimension for Lǫ. Since it is a constraint, it
can only decrease - or not change - the Vγ dimension).

These results imply that in the case of infinite dimensional RKHS the Vγ

dimension is still finite and is influenced only by 5 (R2+1)(A2+1)
γ2 . In the next

section we present a different upper bound on the Vγ dimension in a special case
of infinite dimensional RKHS.

4 The V
 Dimension in a Special Case

Below we assume that the data x are restricted so that for any finite dimensional
matrix G with entries Gij = K(xi,xj) (where K is, as mentioned in the previous
section, the kernel of the RKHS considered, and xi 6= xj for i 6= j) the largest
eigenvalue of G is always ≤ M2 for a given constant M . We consider only the
case that the RKHS is infinite dimensional. We note with B the upper bound of
L(y, f(x)). Under these assumptions we can show that:

Theorem 3. The Vγ dimension for regression using L1 loss function and for

hypothesis space HA = {f(x) =
∑∞

n=1 wnφn(x) + b |
∑∞

n=1
w2

n

λn
≤ A2} is finite

for ∀γ > 0. In particular:

1. If b is constrained to be zero, then Vγ ≤
[

M2A2

γ2

]

2. If b is a free parameter, Vγ ≤ 4
[

M2A2

γ2

]

Proof of part 1.

Suppose we can find N >
[

M2A2

γ2

]

points {(x1, y1), ..., (xN , yN )} that we can

shatter. Let s ∈ [γ,B − γ] be the value of the parameter used to shatter the
points.



Consider the following “separation”1: if |yi| < s, then (xi, yi) belongs in class
1. All other points belong in class -1. For this separation we need:

|yi − f(xi)| ≥ s + γ, if |yi| < s

|yi − f(xi)| ≤ s − γ, if |yi| ≥ s
(9)

This means that: for points in class 1 f takes values either yi + s + γ + δi or
yi − s − γ − δi, for δi ≥ 0. For points in the second class f takes values either
yi + s − γ − δi or yi − s + γ + δi, for δi ∈ [0, (s − γ)]. So (9) can be seen as a
system of linear equations:

∞
∑

n=1

wnφn(xi) = ti. (10)

with ti being yi + s+γ + δi, or yi − s−γ− δi, or yi + s−γ− δi, or yi − s+γ+ δi,
depending on i. We first use lemma 1 to show that for any solution (so ti are
fixed now) there is another solution with not larger norm that is of the form
∑N

i=1 αiK(xi,x).

Lemma 1. Among all the solutions of a system of equations (10) the solution

with the minimum RKHS norm is of the form:
∑N

i=1 αiK(xi,x) with α = G−1t.

For a proof see the Appendix. Given this lemma, we consider only functions
of the form

∑N
i=1 αiK(xi,x). We show that the function of this form that solves

the system of equations (10) has norm larger than A2. Therefore any other
solution has norm larger than A2 which implies we cannot shatter N points
using functions of our hypothesis space.

The solution α = G−1t needs to satisfy the constraint:

αT Gα = tT G−1t ≤ A2

Let λmax be the largest eigenvalue of matrix G. Then tT G−1t ≥ tT t
λmax

. Since

λmax ≤ M2, tT G−1t ≥ tT t
M2 . Moreover, because of the choice of the separation,

tT t ≥ Nγ2 (for example, for the points in class 1 which contribute to tT t an
amount equal to (yi +s+γ+δi)

2: |yi| < s ⇒ yi +s > 0, and since γ+δi ≥ γ > 0,
then (yi + s + γ + δi)

2 ≥ γ2. Similarly each of the other points ”contribute” to
tT t at least γ2, so tT t ≥ Nγ2). So:

tT G−1t ≥ Nγ2

M2
> A2

since we assumed that N > M2A2

γ2 . This is a contradiction, so we conclude that
we cannot get this particular separation.

1 Notice that this separation might be a “trivial” one in the sense that we may want
all the points to be +1 or all to be -1 i.e. when all |yi| < s or when all |yi| ≥ s

respectively.



Proof of part 2.
Consider N points that can be shattered. This means that for any separation,

for points in the first class there are δi ≥ 0 such that |f(xi)+ b−yi| = s+γ + δi.
For points in the second class there are δi ∈ [0, s−γ] such that |f(xi)+ b−yi| =
s−γ− δi. As in the case b = 0 we can remove the absolute values by considering
for each class two types of points (we call them type 1 and type 2). For class
1, type 1 are points for which f(xi) = yi + s + γ + δi − b = ti − b. Type 2
are points for which f(xi) = yi − s − γ − δi − b = ti − b. For class 2, type 1
are points for which f(xi) = yi + s − γ − δi − b = ti − b. Type 2 are points
for which f(xi) = yi − s + γ + δi − b = ti − b. Variables ti are as in the case
b = 0. Let S11, S12, S−11, S−12 denote the four sets of points (Sij are points of
class i type j). Using lemma 1, we only need to consider functions of the form

f(x) =
∑N

i=1 αiK(xi, x). The coefficients αi are given by α = G−1(t − b) there
b is a vector of b’s. As in the case b = 0, the RKHS norm of this function is at
least

1

M2
(t − b)T (t − b). (11)

The b that minimizes (11) is 1
N

(
∑N

i=1 ti). So (11) is at least as large as (after

replacing b and doing some simple calculations) 1
2NM2

∑N
i,j=1(ti − tj)

2.
We now consider a particular separation. Without loss of generality assume

that y1 ≤ y2 ≤ . . . ≤ yN and that N is even (if odd, consider N − 1 points).
Consider the separation where class 1 consists only of the ”even” points {N,N−
2, . . . , 2}. The following lemma is shown in the appendix:

Lemma 2. For the separation considered,
∑N

i,j=1(ti − tj)
2 is at least as large

as γ2(N2−4)
2 .

Using Lemma 2 we get that the norm of the solution for the considered separation

is at least as large as γ2(N2−4)
4NM2 . Since this has to be ≤ A2 we get that N −

4
N

≤ 4
[

M2A2

γ2

]

, which completes the proof (assume N > 4 and ignore additive

constants less than 1 for simplicity of notation).

In the case of Lp loss functions, using the same argument as in the previous
section we get that the Vγ dimension in infinite dimensional RKHS is bounded

by (pB)2M2A2

γ2 in the first case of theorem 3, and by 4 (pB)2M2A2

γ2 in the second
case of theorem 3. Finally for Lǫ loss functions the bound on the Vγ dimension is
the same as that for L1 loss function, again using the argument of the previous
section.

4.1 Empirical V
 Dimension

Above we assumed a bound on the eigenvalues of any finite dimensional matrix
G. However such a bound may not be known a priori, or it may not even exist,
in which case the computation is not valid. In practice we can still use the
method presented above to measure the empirical Vγ dimension given a set of l



training points. This can provide an upper bound on the random entropy of our
hypothesis space [11].

More precisely, given a set of l training points we build the l × l matrix G

as before, and compute it’s largest eigenvalue λmax. We can then substitute M2

with λmax in the computation above to get an upper bound of what we call
the empirical Vγ dimension. This can be used directly to get bounds on the
random entropy (or number of ways that the l training points can be separated
using rules (5)) of our hypothesis space. Finally the statistical properties of our
learning machine can be studied using the estimated empirical Vγ dimension (or
the random entropy), in a way similar in spirit as in [13].

5 Conclusion

We presented a novel approach for computing the Vγ dimension of RKHS for
Lp and Lǫ loss functions. We conclude with a few remarks. First notice that in
the computations we did not take into account ǫ in the case of Lǫ loss function.
Taking ǫ into account may lead to better bounds. For example, considering
|f(x) − y|pǫ , p > 1 as the loss function, it is clear from the proofs presented that

the Vγ dimension is bounded by p2(B−ǫ)2M2A2

γ2 . However the influence of ǫ seems

to be minor (given that ǫ << B).
An interesting observation is that the eigenvalues of the matrix G appear in

the computation of the Vγ dimension. In the second computation we took into
account only the largest and smallest eigenvalues. If the computation is made
to upper bound the number of separations for a given set of points (random
entropy or empirical Vγ dimension) as discussed in section 4.1, then it may be
possible that all the eigenvalues of G are taken into account. This can lead to
interesting relations with the work in [13].
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Appendix

Proof of Lemma 1

We introduce the N ×∞ matrix Ain =
√

λnφn(xi) and the new variable zn =
wn√
λn

. We can write system (10) as follows:

Az = t. (12)

Notice that the solution of the system of equation 10 with minimum RKHS
norm, is equivalent to the Least Square (LS) solution of equation 12. Let us
denote with z0 the LS solution of system 12. We have:

z0 = (A⊤A)+A⊤t (13)

where + denotes pseudoinverse. To see how this solution looks like we use Sin-
gular Value Decomposition techniques:

A = UΣV ⊤,

A⊤ = V ΣU⊤,

from which A⊤A = V Σ2V ⊤ and (A⊤A)+ = VNΣ−2

N
V ⊤

N
, where Σ−1

N
denotes the

N × N matrix whose elements are the inverse of the nonzero eigenvalues. After
some computations equation (13) can be written as:

z0 = V Σ−1

N
U⊤

N
t = (V ΣNU⊤

N
)(UNΣ−2

N
U⊤

N
)t = AG−1t. (14)

Using the definition of z0 we have that

∞
∑

n=1

w0
nφn(x) =

∞
∑

n=1

N
∑

i=1

√

λnφn(x)Aniαi. (15)



Finally, using the definition of Ain we get:

∞
∑

n=1

w0
nφn(x) =

N
∑

i=1

K(x,xi)αi

which completes the proof.

Proof of Lemma 2

Consider a point (xi, yi) in S11 and a point (xj , yj) in S−11 such that yi ≥ yj

(if such a pair does not exist we can consider another pair from the cases listed
below). For these points (ti − tj)

2 = (yi + s + γ + δi − yj − s + γ + δj)
2 =

((yi − yj) + 2γ + δi + δj)
2 ≥ 4γ2. In a similar way (taking into account the

constraints on the δi’s and on s) the inequality (ti − tj)
2 ≥ 4γ2 can be shown to

hold in the following two cases:

(xi, yi) ∈ S11, (xj , yj) ∈ S−11

⋃

S−12, yi ≥ yj

(xi, yi) ∈ S12, (xj , yj) ∈ S−11

⋃

S−12, yi ≤ yj
(16)

Moreover

∑N
i,j=1(ti − tj)

2 ≥ 2
[

∑

i∈S11

(

∑

j∈S−11

⋃

S−12,yi≥yj
(ti − tj)

2
)]

+

2
[

∑

i∈S12

(

∑

j∈S−11

⋃

S−12,yi≤yj
(ti − tj)

2
)]

.
(17)

since in the right hand side we excluded some of the terms of the left hand side.
Using the fact that for the cases considered (ti − tj)

2 ≥ 4γ2, the right hand side
is at least

8γ2
∑

i∈S11
(number of points j in class − 1 with yi ≥ yj)+

+8γ2
∑

i∈S12
(number of points j in class − 1 with yi ≤ yj)

(18)

Let I1 and I2 be the cardinalities of S11 and S12 respectively. Because of the
choice of the separation it is clear that (18) is at least

8γ2 ((1 + 2 + . . . + I1)) + (1 + 2 + . . . + (I2 − 1)))

(for example if I1 = 2 in the worst case points 2 and 4 are in S11 in which case
the first part of (18) is exactly 1+2). Finally, since I1 + I2 = N

2 , (18) is at least

8γ2 N2−4
16 = γ2(N2−4)

2 , which proves the lemma.


